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ABSTRACT

We examine model cluster structures by applying the simple
Hiickel method to spherically symmetric clusters whose atoms
are constrained to occupy cubic (simple, body-centered or face-
centered) and hcp lattice positions. The Hiickel orbitals are orga-
nized into energy shells, many of which remain .vell separated
even at 500-600 atom cluster sizes. The classical droplet model
provides a good fit to cluster atomization energies, which then
correctly extrapolate to the bulk cohesive energy pred:cted by
tight binding calculations. Energy level distributions for cubic
lattices show that features characteristic of a tight binding solid
become fully evident in clusters containing as few as 100 atoms.
A particular example is the high density of states found for the
Fermi level of bcc clusters, vestiges of which might suffice to
confer on suitable materials an enhanced electrical conductivity.



1. INTRODUCTION

While the two extrema, the free atom and the bu.k metal, are quite well under-

stood, much less is known about the transition region in between. The passage from

an atom to bulk material might be envisaged as occurring in roughly three stages.

Molecular size dusters, containing from two to perhaps as many as 50 atoms, will

have properties that are noticeably dependent upon geometry. In some ill defined

region, geometrical features are no longer paramount and cluster properties will be

decided by a combination of lattice structure (not necessarily that of the bulk) and

surface effects. For very large aggregates, neither geometry nor the surface will be

particularly important and these species will be nearly indistinguishable from a

macroscopic sample. The current interest surrounding metal duster research (which

can be traced to the earliest days of computational chemistry)1 derives in large part

from the challenge of unravelling the factors which most influence the first two

stages in the transition to a bulk material.

One experimental approach (adopted mainly by chemists) is to start with the

atom and then synthesize progressively larger cluster sizes, attempting to find the

"onset" of bulk properties such as band structure, 2 metallic properties, 3 plasma res-

onances, 4 ionization behavior,5-8 orbital composition, 9 etc. A second method (more

favored by physicists) involves growing increasingly smail- rarticles and looking

for the appearance of "quantum size" effects in, for exa ' , their magnetic or

thermodynamic properties. 10 Although in principle complementary, the latter ap-

proach is difficult for particles less than 20 A in diameter, while the molecular mea-

surements are usually performed on clusters which contain at most 100 atoms.

There exists a similar and perhaps more severe dichotomy in the computational

treatment of metal clusters. In general,11 duster calculations subdivide into two
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classes: detailed, often ab-initio, studies on clusters containing 2-13 atoms 12 and less

refined surveys of 10 - 100 atom aggregates.13, 14 At the other extreme, the electronic

properties of bulk metals have been characterized by a variety of theoretical tech-

niques such as sophisticated tight binding calculations, 15 cellular methods, 16 aug-

mented plane waves,16 density functional methods, 17,18 etc. Quite naturally, there

have been few attempts (outside of an occasional foray) 19-2 1 to extend molecular

structure techniques to hundreds or thousands of atoms, nor (excepting density

functional treatments) 22-26 are solid state methods easily applied to large, but finite,

systems.

In three earlier papers,2 7-2 9 we have shown that Hiickel molecular orbital

(HMO) calculations will predict reasonable structures and binding energies for small

alkali-like metal clusters, M 2-M 14. It is not possible, however, to perform a rigorous

search for the most stable geometries of clusters containing more than about 10

atoms. In this paper we investigate model cluster structures with the aim of extend-

ing some of our earlier observations and also of exploring the gap between the

molecular and solid state regimes. Akin to the ideas of a "cubium" model, 20 ,2 1 we

have applied the simple Hiickel technique to spherically symmetric clusters whose

atoms are constrained to occupy simple cubic (sc), body-centered cubic (bcc), face-cen-

tered cubic (fcc) and hexagonal close packing (hcp) !attice positions. Aside from the

ease of treating clusters containing several hundred atoms, this approach has the

advantage of having a well defined limit, namely the tight binding model (TBM), 30-

33 for an infinite array of atoms. The calculations are restricted (for the most part) to

nearest neighbor bonding interactions (and so a unique bond length) which pre-

cludes a meaningful comparison with the icosahedral structure, even though this

arrangement may be quite stable.34 While obviously unrealistic for molecular size

clusters, the assumption of a definite lattice structure may not be as significant a re-
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striction for dusters containing several hundred atoms. A more serious question re-

lates to the applicability of simple tight binding calculations. As just noted, the HMO

model gives surprisingly good results fur both neutral and ionic clusters and can

even (in certain aspects) be correctly extrapolated to infinite duster size. However,

the simple TBM is a poor predictor of bulk behavior. Accordingly, our Hiickel re-

sults for I - 500 atom dusters may (as discussed below) be quantitatively misleading,

although we believe they do give considerable qualitative insight into the transition

to bulk behavior.

II. SPHERICAL CLUSTERS HAVING CRYSTAL SYMMETRIES

The position of an atom (or group of atoms) in a cubic or hcp crystal can be spec-

fled by a linear combination

r = nlal + n2a2 + n3a3 + n4a4 (1)

of primitive vectors ai (i = 1-3) where the expansion coefficients (ni) are constrained

to be integral.30 "33 Differing Bravais lattices may be defined through different sets of

ai expressed in terms of orthogonal, unit vectors , and 2 and a lattice constant, a.

Table I summarizes these relationships for the three cubic lattices and for the hcp

arrangement. For hcp, the displacement vector a4 specifies the relationship between

two interpenetrating simple hexagonal lattices and n4 is either 0 or 1.31 Table I also

gives lattice constants expressed in terms of a "Hiickel unit" (abbreviated to hu) of

distance. The latter is defined by setting the distance between nearest neighbor atoms

equal to unity.

For an infinite array of atoms, there are no restrictions on the magnitudes of the

integers (ni, n2, n3). For a metal (or other) cluster, constrained to have the symmetry
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of a particular crystal lattice, then Eq. (1) still pertains but now the ni have maxi-

mum values determined by the finite cluster radius. Spherically symmetric clusters

can be generated by finding all sets of ni for which r is less than a chosen maximum

radius. In the case of a simple cubic lattice, for example, then Eq. (1) together with

the data of Table I gives (distances in hu)

r2 = I=nl2 +n2 2 +n3 2

I = 0, 1, 2,3, ...., M (2).

w,,here M (which is an integer) corresponds to the maximum cluster radius. Ap-

pendix A outlines the algorithm used for generating integral ni subject to the con-

straints of Eq. (2). Table II gives the shell radii and atomic occupations 35 for simple

cubic dusters having up to 23 shells. Each shell may be characterized by an integral

shell number, where shell number 0 pertains to the central atom. Shell number 1

contains 6 additional atoms whose integer "co-ordinates" are (ni, n2, n3) = (0, 0, ±1),

(0, ±1, 0) and (±1, 0, 0) and so forth. Notice that not every r2 equal to arn integer will

generate integral ni. Thus, for example, there is no Table II entry under r 2 = 7 in the

case of a simple cubic lattice. Accordingly, there is not a 1-1 correspondence between

the integer I and the shell number. Analogous to the simple cubic case, shell radii

for bcc, fcc and hcp structures are defined by the relations

3r 2 = I = n12 + n22 + n32 - 2(n l n 2 + nln3 + n2n3)

I=0,1,2 .... ,3M (3)

r2 = I=n 2 +n2 2 +n3 2 +nln2+nln 3 +n2n 3

I=0,1,2 .... ,M (4)
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3r 2 = I = 3(n, 2 + n22 + n42 ) + 8n32 + 3(nln2 + nln4 + n2n4) + 8n3n4

I=0,1,2,....,3M (5)

respectively. Appendix A also gives algorithms for computing ni satisfying Eqs. (3),

(4) or (5). Table I summarizes the shell radii and atomic occupation numbers35 for

the four lattice structures considered in this paper.

The Hickel matrix for an n atom cluster has matrix elements given by (1 < i j

5_ n):

H.. =ao
11

(6)
( -(3if i is bonded to j

L. 0 otherwise

where a and 3 denote the empirical Hiickel Coulomb and resonance integrals, re-

spectively. As in previous work,2 7-29 we choose energy units in which cc = 0 and 3 =

1 and denote these "Hiickel units", abbreviated to hu. We have not attempted to ad-

just the Hiickel P-parameter for either cluster size or atomic coordination number.

While global properties, such as duster cohesive energies, are relatively insensitive

to small variations of this sort,25 ,3 6,3 7 an invariant (3 may preclude an accurate de-

scription of certain surface effects. 21

It is relatively straightforward to generate the Hickel matrix from the previ-

ously computed integers, ni. The criterion for i to be bonded to j is simply I r(i) - r(j) I

= 1, where in the case of sc dusters, for example, the distance between two atoms (i

and j) is given by
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I r(i) - r(j) 12 = (n1(i) - nl(j)]2 + [n2(i) - n2(j)] 2 + [n3(i) - n3(j)] 2

and similar, but more complicated expressions pertain to the bcc, fcc and hcp ar-

rangements. The eigenvalues (Ei) and eigenfunctions were obtained by numerical

diagonalization of Hiickel matrices containing up to 555 atoms. In order to obtain

well defined electron distributions, symmetry adapted wavefunctions which trans-

form as irreducible representations of the Oh point group were constructed using

projection operator techniques. The atomization energy of an n atom cluster is

given by

AE(n) = Xmiei

(7)

n = -mi

i

where the summations extend over all occupied (mi = 2) or partially occupied (mi =

1) molecular orbitals.

III. DISCUSSION

A. Cluster cohesive energies

Table III gives AE(n)/n, the cluster atomization energy per atom, for sc, bcc and

fcc clusters having up to 22 atomic shells. Also given in this table are the corre-

sponding bulk parameters, namely the crystal cohesive energies. The latter were cal-

culated numerically from 38
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AE(n)/n - 2 3 fff (k) ddk._dk3  (8)(2n)3 e(k) <_Ef

with

8(k) = -2(coski + cosk2 + cosk3) (9)

or (k) = -2{coski + cosk 2 + cosk3 + cos(k1 + k2 + k3)) (10)

or E(k) = -2(coskl + cosk2 + cosk3
+ cos(ki - k2 ) + cos(k1 - k3) + cos(k2 - k3)) (11)

for simple, body-centered and face-centered cubic lattices, respectively. Eqs. (9)-(1)

are special cases of the more general result 30 -33

e(k) = a - 5 3Jeikr (12)
nnl

which gives the tight binding eigenvalues when only nearest neighbor (nn) interac-

tions are included. In these expressions, k is the electron wavevector written in

terms of reciprocal lartice basis vectors

k = klbj + k2b2 + k3b3  (13)

where the bi are defined in terms of the previously introduced (see Eq. (1) and Table

I) primitive vectors al, a2 and a3 by 39

ai-bi = Sij (14).
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Cohesive energies were evaluated by subdividing the first Brillouin zone (-it < ki <

+iT) into small volume elements which contribute to the integral in Eq. (8) only if

a(k), as given by Eqs. (9), (10) or (11), is less than the crystal Fermi energy, Ef.

Figure 1 shows plots of AE(n)/n versus n for bcc and fcc clusters. The atomiza-

tion energies for simple cubic dusters fall dose to the bcc data points and were omit-

ted for clarity. The full lines in this figure are least squares fits of the Table III data to

the liquid drop expression

AE(n)/n = A + Bn-1 / 3  (15)

where the A and B terms pertain to volume and "surface" energy contributions, re-

spectively. 28,40 For small bcc (and sc) dusters, the HMO atomization energies deviate

noticeably from the classical curve. For n > 100, where geometrical features are no

longer paramount, these quantum osc:Iations become much smaller and AE(n)/n

converges smoothly and slowly to its asymptotic value. For a 600 atom bcc duster,

for example, AE(n)/n is approximately 85% of its bulk value. Only after 10-20,000

atoms will bcc dusters acquire 95% of their bulk cohesive energy. The atomization

energies of fcc and hcp dusters show a less oscillatory behavior, as (perhaps unex-

pectedly) do the less symmetric M2 - M14 clusters. The extent of the deviations from

classical behavior at small n appears to correlate with the number of bonding neigh-

bors. Thus, with a next nearest neighbor interaction included (see below), the bcc

oscillations become noticeably less pronounced. The A parameter in Eq. (15) repre-

sents the cohesive energy of the bulk crystal, obtained by extrapolating from finite

crystal sizes to infinity. Table IV gives the best fit A and B parameters with one stan-

dard deviation uncertainty in parentheses. 4 1 Table IV also compares A coefficients

with the previously discussed "exact" cohesive energies obtained from Eq. (8). The

two data sets differ by <10%, which implies that cluster atomization energies are in-
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deed well represented by a liquid drop model. As in several previous examples, 2 8

the classical A and B parameters are similar in their magnitudes, thus ensuring that

the "critical nucleus",4 2 n* = (-2B/3A)3 , is always less than unity.

Fig. 1 also shows the liquid drop curve (data points omitted for clarity) obtained

from the HMO atomization energies of the most stable neutral clusters, M 2 -M1 4. As

discussed in Ref. 28, these data predict a bulk cohesive energy of 3.0(1)1. Further-

more, with an appropriate choice of the Hickel P-parameter, extrapolated HMO co-

hesive energies differ, on average, by only 15% from the experimental values for LI

Cs. 28 Since simple Hiickel calculations also give cluster atomization energies in

good agreement with experiment and ub-initio theory, 28 the curve denoted M 2 -M14

in Fig. 1 is, presumably, a fairly accurate representation of AE(n)/n for the Group IA

elements at all 2 _ n 5 -. Thus, although the crystal structure of the alkali metals is

body-centered cubic, the Hickel data for spherical bcc clusters significantly underes-

timates atomization energies, even at the bulk limit. This is not totally surprising,

since simple tight binding calculations are known to be erroneous in several of their

predictions (see below) for the alkali metals. Figure 1 shows that simple Hiickel cal-

culations predict fcc (and hcp)43 clusters to be much more stable than the body-cen-

tered arrangement, apparently because there are four additional nearest neighbors in

the former. The atomization energies of hcp and fcc clusters are very similar. As can

be seen from Table II, the two structures become distinguishable only when third

nearest neighbor atoms are considered. 44 However, bcc clusters have six ,:ert nearest

neighbors (see Table I) which are only 15% more distant than the nearest neighbor

shell and so bcc and fcc packing fractions differ by only 6%. ?1,45 This suggests that

including the bonding of next nearest neighbor atoms would improve the relative

stability of bcc dusters and might in addition give better cohesive energies for the

bulk bcc solid. In fact, HMO calculations which do include a next nearest neighbor
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interaction (-, in units of 13) show that bcc atomization energies increase for all 0 < y

< 1. However, even if y is close to unity, asymptotic cohesive energies are still signif-

icantly smaller than 3.0p. 46

B. Hiickel energy levels

Figure 2 summarizes the positions of the Hickel orbital energies (denoted by

horizontal tick marks) for cubic and hcp lattices. Since Hickel theory is the molecu-

lar analog of the tight binding model (TBM) for a macroscopic sample, the overall

appearance of these plots reflects the band structure predicted by tight binding calcu-

lations. Thus (see also section III.C) the eigenvalue spectra for sc and bcc lattices are

symmetric about the atomic energy (a = 0), with extrema at ±60 and ±83, respec-

tively, where the lower bound is identically equal to the number of nearest neigh-

bors in the lattice. For all n = 1 - o, the Fermi level lies at precisely 0 hu. In the case

of fcc and hcp, however, the bulk state distributions are asymmetric: the TBM ener-

gies lie between -1213 and +4P and the Fermi energy is slightly greater than 0 hu.

In contrast to the bulk case, finite clusters have a finite number of energy levels.

As shown in Fig. 2 these energies are organized into well defined shells which, as

described elsewhere,28 ,47 may be classified by the global nodal character of the duster

wavefunctions. Thus, for example, the lowest duster orbital has no angular or radial

nodes and so can be denoted 1s. The wavefunctions for the next lowest cluster

eigenvalue, whose three fold degeneracy4 8 is not shown in Fig. 2, have one angular

node and so correspond to three orthogonal Ip orbitals. Following Ip, cluster or-

bitals group by energy as 1d, 2s and 1f. However, the ld and if degeneracies are par-

tially lifted, the extent of this being dependent upon cluster size. The appearance of

energy shells is a natural consequence of quantum (notably jellium) models in
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which the electrons are assumed to move in a spherically symmetric potential aris-

ing from a uniform background of positive charge.6 ,2 2-24,49 ,5 0 In a previous Hiickel

study of molecular clusters (whose atoms were not constrained to have crystal

symmetry) it was shown that filled, cluster orbitals were organized into well sepa-

rated energy shells, and that these could be parameterized to give results similar to

those obtained by conventional jellium calculations. 2 8 It is not surprising, therefore,

that the highly symmetric model structures considered here should also show shell

structures. What is notable is the persistence of the energy shells, even for clusters

containing 500-600 atoms. For a 537 atom sodium cluster having a bcc structure, for

example, the is-ip gap is still 0.2 eV,5 1 and will fall below 0.1 eV (fitting the is and

1p shell energies to expressions similar to Eq. (2) of Ref. 28)52 only for clusters con-

taining over 2000 atoms.

C. Density of states

Figure 3 shows the density of states (DOS) for selected cluster sizes and also

makes a comparison with the bulk solid. The histograms for n = 100, 250 and 500

were derived by dividing the total range of allowed eigenvalues (16 hu) into equal

increments (Ac) and then counting the number, gn(c), of states (including degenera-

cies) within each section. The data shown in Fig. 3 pertain to gn(E) in units of

states/hu for AE = 16+33 hu. We chose this A- (which is somewhat arbitrary) in order

to "smooth out" some of the shell structure shown in Fig. 2, as this makes a compar-

ison with the bulk DOS profiles more compelling.

For an infinite crystalline solid, the density of states per unit volume may be

evaluated from30 3 3
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(E) 2ff dS (16)

where S is a surface of constant energy in k-space, Ve is the energy gradient normal

to this surface, V is the volume of the first Brillouin zone (8C 3 /a 3 , 16X 3 /a 3 and

32X3 / a3 for sc, bcc and fcc lattices, respectively) 32 and the factor of two accounts for

electron spin degeneracy. The density of states derived from tight binding calcula-

tions is well known and results for sc and bcc lattices are shown in, for example, Fig.

38 of Ref. 33. We re-evaluated g(c) by numerically integrating Eq. (16), but using in-

stead of Eqs. (10) and (11) tight binding eigenvalues expressed in terms of kx, ky and

kz,53 and our computed DOS profiles are given in Figures 3a and 3b. For fcc lattices

(Fig. 3c), where the integration limits are more difficult to visualize, we employed

Eq. (11) and evaluated g(e) by counting the number of points in k-space lying within

two concentric surfaces of constant and nearly equal energy. Also shown in Fig. 3c is

the Fermi energy for an fcc lattice, Ef = 0.459 hu. This parameter equals the energy at

which the tight binding orbitals are exactly half filled, and was determined by nu-

merical integration of the computed g(E) versus e data. As noted earlier, Ef = 0 hu for

both sc and bcc lattices.

The most noticeable feature of Fig. 3 is the close similarity between the state

densities of relatively small clusters and bulk materials. This is particularly striking

for the symmetric sc and bcc profiles, from which it is apparent that most of the fea-

tures of the bulk DOS are evident in clusters containing 100 (or fewer) atoms. The

"discontinuities" (van Hove singularities) 3 0 ,3 1 in the bulk curves occur at points

where the Fermi surface comes into contact with the first Brillouin zone and so the

form of the bulk DOS is particularly dependent upon the shapes of these two sur-

faces. Thus the data shown in Fig. 3 imply that small metal dusters have both an in-
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cipient Fermi surface and a nascent Brillouin zone structure, although neither

surface" would (of course) be continuous.

The tight binding model predicts an infinite, but integrable, density of states at

the Fermi level (Ef = 0 hu) of a bcc solid.33 As shown in Fig. 3b, the corresponding

cluster phenomenon is an extremely high value for the degeneracy, Dn(E), of the

Hiickel orbitals at s = 0 hu. The actual Fermi level degeneracy, given in Table V, in-

creases (fairly systematically)5 4 with increasing cluster size. The fractional Fermi

level degeneracy, Dn(0)/n given in column 4 of Table V, decreases rather slowly so

that (for example) 15% of the Hiickel orbitals in a 500 atom bcc duster are located at C

= 0 hu. The Hiickel calculations also predict a relatively large Fermi level degeneracy

for simple cubic clusters. This degeneracy does not increase regularly with cluster

size and is relatively less important than in the bcc case. For example, the 515 atom

cluster shown in Fig. 3a has a 25-fold degeneracy at E = 0, which would be more no-

ticeable if the Fig. 3a data were plotted using a smaller energy increment, Ae. As a

corollary of these high degeneracies, large energy gaps appear near to the Fermi level

of both sc and bcc clusters. For a 500 atom cluster, the energy level spacing near Ef is

5f = 500 - 1000 K (we specialize to the case of sodium)5 1 which is considerably greater

than the comparable quantity3 2 for a free electron Fermi gas, Sf = 3Ef/4n = 40K.5 5

Accordingly, alkali-like metal clusters might show measurable quantum size ef-

fects 10 for much larger sizes than those predicted by the simple Kubo criterion 8f =

kT,56 even if these aggregates are less symmetric than the idealized structures con-

sidered here.
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IV. CONCLUSION

In concluding, we re-emphasize that our calculations pertain to model cluster

structures. Our objective has been to expand upon some earlier observations,27-29 in

particular the connection between molecular orbital calculations and simpler, but

valid, descriptions such as the shell and liquid drop models. In addition, we wanted

to explore theoretically the relationship between cluster and bulk properties

(cohesive energies, state densities, etc.) under conditions where the two extrema are

well defined. Actual systems are unlikely to be so agreeable. Thus, for example, a

real cluster of several hundred alkali atoms, even if approximately body-centered

cubic, would presumably show only -. vestige of the degeneracy predicted by Table V

and Fig. 3b.

A more serious criticism of the Hiickel model lies in the well known failure of

tight binding calculations to correctly predict certain features of real metals. For ex-

ample, de Haas-van Alphen measurements suggest that the Fermi surface of the al-

kali metals is nearly a perfect sphere (some deviations from sphericity may exist,

however) 57, whereas the TBM predicts pronounced "neck-like" features. 31 Thus, the

bulk metal is better described by a Fermi gas model, and this will give DOS profiles

quite different from those described above.33 Since simple Hiickel calculations are

surprisingly reliable for molecular size clusters, 27-29 the source of their poor perfor-

mance in larger systems is not entirely clear. As noted in Ref. 28, both HMO and

tight binding calculations make rather drastic simplifications. In particular, we refer

to the neglect of hybridization (a significant factor for alkali clusters)9 and to the use

of single electron wavefunctions. For alkali metals, there is a convenient cancella-

tion of Coulomb and exchange terms and so the latter approximation is actually

quite good.58 Any prediction of absolute orbital and cohesive energies will implicitly
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include hybridization (and overlap) effects since the Hickel [3-parameter is always

chosen from experimental data. However, s-p hybridization will change the charac-

ter of the Fermi surface, making it in fact more free electron like (e.g. see Sect. II 4 of

Ref. 33). As noted earlier, we also tested the effect of next nearest neighbor interac-

tions. In addition to improving cluster binding energies, these should provide a

mechanism for further "delocaizing" .he valence electrons. For bcc clusters, the in-

clusion of next nearest neighbor interactions does, in fact, give a DOS profile whose

appearance is more like that expected (Compare curves (1), (2) and (3) in Fig. 38 of

Ref. 33) for a Fermi gas. Conversely, it is interesting to speculate on the possible exis-

tence of bcc materials (duster or bulk) which can be accurately described by a simple

tight binding model. Because of the predicted -high density of states at Ef, these mate-

rials would be expected to have particularly large electrical conductivities and might

even be good candidates for high Tc superconductors.
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APPENDIX A: ATOM POSITIONS IN SPHERICAL CLUSTERS

For a cubic or hcp lattice, atomic position vectors may be specified by

r = nlal + n2a2 + n3a3 + n4a4

with ai given in Table I. In a finite cluster whose overall shape is spherical, the inte-

gers ni (i=1-3) are subject to the constraint that r2 should not exceed a chosen maxi-

mum value and n4 = 0 or 1, as described in section II. In order to find these sets of ni,

it is convenient to use the combinations X = nl + n2, Y = nln2 and Z = (nl + n2) 2 > 0,

so that

ni = (X ± {Z - 4Y)l/2)/2 (Al)

and n2 = X - n (A2)

where integral ni require Z > 4Y. Eqs. (2) - (5) in the text give the additional relations

n3 = (I - (Z - 2Y) 1/ 2  W(A3)

or n3 = (X ± (31 + 24Y - 8Z)1/ 2)/3 (A4)

or n3 = (-X ± (4(1 + Y) - 3Z)1/2)/2 (AS)

or n3 = 1/4(-2n4 ± (2[I - n4] + 6[Y - Z - n4X]) 1/ 2 ) (A6)

for sc, bcc, fcc or hcp lattice structures, respectively. In order that n3 be integral, the

terms in braces must be positive or zero. Combining this requirement with Z > 4Y

and Z Z 0 gives

I = 0,1,2 ..... ,M

Y = 41/21, -[1/21 + I ...... , +[I/2] (A7)

-18-



Z = max(0,4Y), max(0,4Y) + ....... (I + 2Y)

I = 0,1,2 ..... 3M

Y = -[1/8], -[1/81 + 1 ...... , +[31/81 (A8)

Z = max(0,4Y), max(0,4Y) + 1 ......, [3(1 + 8Y)/81

I = 0,1,2, ...... M

Y = -1,-I + 1, ..... +[I/2] (A9)

Z = max(0,4Y), max(0,4Y) + I ...... , [4(I + Y)/3]

I = 0,1,2 ..... ,M

4Z = -[2/3(I+n4)], -[2/3(lI+n4)] + ...... , +[2/3('lI-n4)] (AO)

Y = -[1/3], -[1/31 + 1 ......, +[Z/4]

where Eqs. (A7) - (A1O) pertain to sc, bcc, fcc and hcp (here n4 = 0 or 1, except for I = 0)

lattices, respectively, and [N] denotes the integer part of N. Thus, the algorithm we

used to generate integer (nl, n2, n3) is: (i) for each I, find possible Y and Z according

to Eqs. (A7) - (AO); (ii) if q/Z is not an integer, reject the set of I, Y, Z; (iii) if the terms

in braces in either Eq. (A2) or the appropriate member of (A3) - (A6) are not integers,

reject the set of I, Y, Z; (iv) otherwise, construct n1, n2 and n3 from (Al), (A2) and

one of (A3) - (A6).
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TABLE I. Relationship between primitive vectors (al, a2, a3), the displacement vec-
tor a4 and cartesian unit vectors ( , , i) for cubic and hcp Bravais lattices (see Ref.
31). Bottom row entries are lattice constants (a) in Hfickel units (see text).

Sc bcc fcc hcp

al (k +  )'//3 ( + 1.)/4,2

a,7 (I + - 5)/'3 ( + ()/2( + <39)/2

a3 (+ +-/)/3 (+)/2(8/3)

a4 0 0 0 al/3 + a2/3 + a3/2

a 2/4I3 1/12 1
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TABLE II. Shell radii and shell occupancies for spherical dusters having cubic or

hexagonal close packing lattices. Radii are in hu (see text).

sc bcc fcc hcp
shell

number radius atoms radius atoms radius atoms radius atoms

0 0.000 1 0.000 1 0.000 i 0.000 1
1 1.000 6 1.000 8 1.000 12 1.000 12
2 1.414 12 1.155 6 1.414 6 1.414 6
3 1.732 8 1.633 12 1.732 24 1.633 2
4 2.000 6 1.915 24 2.000 12 1.732 18
5 2.236 24 2.000 8 2.236 24 1.915 12
6 2.449 24 2.309 6 2.449 8 2.000 6
7 2.828 12 2.517 24 2.646 48 2.236 12
8 3.000 30 2.582 24 2.828 6 2.380 12
9 3.162 24 2.828 24 3.000 36 2.449 6

10 3.317 24 3.000 32 3.162 24 2.517 6
11 3.464 8 3.266 12 3.317 24 2.582 12
12 3.606 24 3.416 48 3.464 24 2.646 24
13 3.742 48 3.464 30 3.606 72 2.708 6
14 4.000 6 3.651 24 3.873 48 2.887 12
15 4.123 48 3.786 24 4.000 12 3.000 12
16 4.243 36 3.830 24 4.123 48 3.109 24
17 4.359 24 4.000 8 4.243 30 3.162 12
18 4.472 24 4.123 48 4.359 72 3.215 12
19 4.583 48 4.163 24 4.472 24 3.266 2
20 4.690 24 4.320 48 4.583 48 3.317 12
21 4.899 24 4.435 72 4.690 24 3.367 6
22 5.000 30 4.619 6 4.796 48 3.416 24
23 5.099 72 4.899 8 3.464 6

-26-



TABLE III. Atomization energy/atom, AE(n)/n, for spherical clusters (Mn) having

cubic lattices. Energies are in hu.

sc bcc fcc
shell

number n AE(n)/n n AE(n)/n n AE(n)/n

0 1 0.0000 1 0.0000 1 0.0000
1 7 0.6999 9 0.6285 13 1.8462
2 19 1.3232 15 1.3963 19 1.9022
3 27 1.5713 27 1.3205 43 2.0163
4 33 1.4758 51 1.5501 55 2.0885
5 57 1.4597 59 1.6416 79 2.2039
6 81 1.7090 65 1.7025 87 2.1685
7 93 1.6567 89 1.5713 135 2.2385
8 123 1.7149 113 1.7196 141 2.2346
9 147 1.7048 137 1.7143 177 2.2746

10 171 1.7464 169 1.8045 201 2.3221
11 179 1.7726 181 1.7715 225 2.3010
12 203 1.7254 229 1.7562 249 2.3103
13 251 1.7977 259 1.8083 321 2.3464
14 257 1.7739 283 1.8400 369 2.3662
15 305 1.7823 307 1.8282 381 2.3687
16 341 1.7943 331 1.8471 429 2.3660
17 365 1.8162 339 1.8529 459 2.3653
18 389 1.8024 387 1.8389 531 2.3805
19 437 1.8186 411 1.8614 555 2.3902
20 461 1.8403 459 1.8407
21 485 1.8472 531 1.8801
22 515 1.8222 537 1.8850

00 00 2.0048 o0 2.0641 oo 2.6168
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TABLE IV. Liquid drop A and B parameters for clusters having cubic lattice struc-

tures.4 1 Comparison of extrapolated and "exact" bulk cohesive energies.

-A B

Eq. (8) Eq. (15) Eq. (15)

sc 2.00 2.18(4) 2.5(2)

boc 2.06 2.26(5) 2.8(2)

fcc 2.62 2.61(1) 1.90(6)
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TABLE V. Fermi level degeneracy, D,(0), for bcc dusters and Fermi energy (Ef in hu)

of fcc dusters. For sc and bcc structures, Ef = 0.

b0c fcc
shell

number n Dn(0) Dn(0)/n n Ef

0 1 1 1.000 1 0.000
1 9 7 0.778 13 0.000
2 15 7 0.467 19 0.000
3 27 13 0.481 43 0.867
4 51 19 0.373 55 1.000
5 59 19 0.322 79 0.648
6 65 19 0.292 87 0.664
7 89 31 0.348 135 0.586
8 113 31 0.274 141 0.618
9 137 37 0.270 177 0.673
10 169 37 0.219 201 0.826
11 181 43 0.238 225 0.588
12 229 55 0.240 249 0.893
13 259 55 0.212 321 0.860
14 283 55 0.194 369 0.881
15 307 61 0.199 381 0.910
16 331 61 0.184 429 0.770
17 339 61 0.180 459 0.814
18 387 73 0.189 531 0.805
19 411 73 0.178 555 0.839
20 459 85 0.185
21 531 85 0.160
22 537 85 0.158

00 00 00 0.000 00 0.459
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FIGURE CAPTIONS

Eig1. Atomization energy per atom for bcc, fcc and most stable M 2 -M1 4 clusters
(from Refs. 27, 28; data points omitted for clarity). Full lines pertain to a liquid drop
model.

Fig. 2H Hickel eigenvalues £(n) for spherical clusters containing up to 500-600
atoms. Energy levels are denoted by horizontal tic marks. Orbital degeneracies are
omitted for clarity.

Fig. . Density of state profiles for small clusters and comparison with the bulk.
Cluster gn(E) pertain to the total number of states within an energy increment Ae =
u.4848 hu (see text). For iL = -, g(E) is the DOS per unit volume obtained from a tight
binding calculation. The arrows in Fig. 3(c) denote the Fermi energy (Ef).
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